package org.aion.util.map;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import java.util.Spliterator;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

/**
 * Don't use this hashmap class without override their hash() function. This class is abstract to
 * prevent use it directly.
 *
 * @author jin
 * @param <K>
 * @param <V>
 */
public abstract class HashMap<K, V> extends AbstractMap<K, V>
        implements Map<K, V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181266L;

    /*
     * Implementation notes.
     *
     * This map usually acts as a binned (bucketed) hash table, but
     * when bins get too large, they are transformed into bins of
     * TreeNodes, each structured similarly to those in
     * java.util.TreeMap. Most methods try to use normal bins, but
     * relay to TreeNode methods when applicable (simply by checking
     * instanceof a node).  Bins of TreeNodes may be traversed and
     * used like any others, but additionally support faster lookup
     * when overpopulated. However, since the vast majority of bins in
     * normal use are not overpopulated, checking for existence of
     * tree bins may be delayed in the course of table methods.
     *
     * Tree bins (i.e., bins whose elements are all TreeNodes) are
     * ordered primarily by hashCode, but in the case of ties, if two
     * elements are of the same "class C implements Comparable<C>",
     * type then their compareTo method is used for ordering. (We
     * conservatively check generic type via reflection to validate
     * this -- see method comparableClassFor).  The added complexity
     * of tree bins is worthwhile in providing worst-case O(log n)
     * operations when keys either have distinct hashes or are
     * orderable, Thus, performance degrades gracefully under
     * accidental or malicious usages in which hashCode() methods
     * return values that are poorly distributed, as well as those in
     * which many keys share a hashCode, so long as they are also
     * Comparable. (If neither of these apply, we may waste about a
     * factor of two in time and space compared to taking no
     * precautions. But the only known cases stem from poor user
     * programming practices that are already so slow that this makes
     * little difference.)
     *
     * Because TreeNodes are about twice the size of regular nodes, we
     * use them only when bins contain enough nodes to warrant use
     * (see TREEIFY_THRESHOLD). And when they become too small (due to
     * removal or resizing) they are converted back to plain bins.  In
     * usages with well-distributed user hashCodes, tree bins are
     * rarely used.  Ideally, under random hashCodes, the frequency of
     * nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average for the default resizing
     * threshold of 0.75, although with a large variance because of
     * resizing granularity. Ignoring variance, the expected
     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
     * factorial(k)). The first values are:
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     *
     * The root of a tree bin is normally its first node.  However,
     * sometimes (currently only upon Iterator.remove), the root might
     * be elsewhere, but can be recovered following parent links
     * (method TreeNode.root()).
     *
     * All applicable internal methods accept a hash code as an
     * argument (as normally supplied from a public method), allowing
     * them to call each other without recomputing user hashCodes.
     * Most internal methods also accept a "tab" argument, that is
     * normally the current table, but may be a new or old one when
     * resizing or converting.
     *
     * When bin lists are treeified, split, or untreeified, we keep
     * them in the same relative access/traversal order (i.e., field
     * Node.next) to better preserve locality, and to slightly
     * simplify handling of splits and traversals that invoke
     * iterator.remove. When using comparators on insertion, to keep a
     * total ordering (or as close as is required here) across
     * rebalancings, we compare classes and identityHashCodes as
     * tie-breakers.
     *
     * The use and transitions among plain vs tree modes is
     * complicated by the existence of subclass LinkedHashMap. See
     * below for hook methods defined to be invoked upon insertion,
     * removal and access that allow LinkedHashMap internals to
     * otherwise remain independent of these mechanics. (This also
     * requires that a map instance be passed to some utility methods
     * that may create new nodes.)
     *
     * The concurrent-programming-like SSA-based coding style helps
     * avoid aliasing errors amid all of the twisty pointer operations.
     */
    /** The default initial capacity - MUST be a power of two. */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified by either of the
     * constructors with arguments. MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /** The load factor used when none specified in constructor. */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a bin. Bins are converted to
     * trees when adding an element to a bin with at least this many nodes. The value must be
     * greater than 2 and should be at least 8 to mesh with assumptions in tree removal about
     * conversion back to plain bins upon shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a resize operation. Should be
     * less than TREEIFY_THRESHOLD, and at most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified. (Otherwise the table is resized
     * if too many nodes in a bin.) Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries. (See below for TreeNode subclass, and in
     * LinkedHashMap for its Entry subclass.)
     */
    static class Node<K, V> implements Map.Entry<K, V> {

        final int hash;
        protected final K key;
        V value;
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final String toString() {
            return key + "=" + value;
        }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (o == this) {
                return true;
            }
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) {
                    return true;
                }
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */
    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash to lower. Because the table
     * uses power-of-two masking, sets of hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys holding consecutive whole
     * numbers in small tables.) So we apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and quality of bit-spreading. Because
     * many common sets of hashes are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of collisions in bins, we just XOR
     * some shifted bits in the cheapest possible way to reduce systematic lossage, as well as to
     * incorporate impact of the highest bits that would otherwise never be used in index
     * calculations because of table bounds.
     */
    protected abstract int hash(Object key);
    //    static int hash(Object key) {
    //        int h;
    //        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    //    }

    protected abstract boolean keyEquals(Object key, K k);

    protected abstract boolean valEquals(Object value, V v);

    /** Returns x's Class if it is of the form "class C implements Comparable<C>", else null. */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c;
            Type[] ts, as;
            ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
            {
                return c;
            }
            if ((ts = c.getGenericInterfaces()) != null) {
                for (Type t : ts) {
                    if ((t instanceof ParameterizedType)
                            && ((p = (ParameterizedType) t).getRawType() == Comparable.class)
                            && (as = p.getActualTypeArguments()) != null
                            && as.length == 1
                            && as[0] == c) // type arg is c
                    {
                        return c;
                    }
                }
            }
        }
        return null;
    }

    /** Returns k.compareTo(x) if x matches kc (k's screened comparable class), else 0. */
    @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 : ((Comparable) k).compareTo(x));
    }

    /** Returns a power of two size for the given target capacity. */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */
    /**
     * The table, initialized on first use, and resized as necessary. When allocated, length is
     * always a power of two. (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K, V>[] table;

    /** Holds cached entrySet(). Note that AbstractMap fields are used for keySet() and values(). */
    transient Set<Map.Entry<K, V>> entrySet;

    /** The number of key-value mappings contained in this map. */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified Structural modifications are
     * those that change the number of mappings in the HashMap or otherwise modify its internal
     * structure (e.g., rehash). This field is used to make iterators on Collection-views of the
     * HashMap fail-fast. (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */
    /**
     * Constructs an empty {@code HashMap} with the specified initial capacity and load factor.
     *
     * @param initialCapacity the initial capacity
     * @param loadFactor the load factor
     * @throws IllegalArgumentException if the initial capacity is negative or the load factor is
     *     nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0) {
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        }
        if (initialCapacity > MAXIMUM_CAPACITY) {
            initialCapacity = MAXIMUM_CAPACITY;
        }
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
        }
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty {@code HashMap} with the specified initial capacity and the default load
     * factor (0.75).
     *
     * @param initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty {@code HashMap} with the default initial capacity (16) and the default
     * load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new {@code HashMap} with the same mappings as the specified {@code Map}. The
     * {@code HashMap} is created with default load factor (0.75) and an initial capacity sufficient
     * to hold the mappings in the specified {@code Map}.
     *
     * @param m the map whose mappings are to be placed in this map
     * @throws NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * @param m the map
     * @param evict false when initially constructing this map, else true (relayed to method
     *     afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float) s / loadFactor) + 1.0F;
                int t = ((ft < (float) MAXIMUM_CAPACITY) ? (int) ft : MAXIMUM_CAPACITY);
                if (t > threshold) {
                    threshold = tableSizeFor(t);
                }
            } else if (s > threshold) {
                resize();
            }
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns {@code true} if this map contains no key-value mappings.
     *
     * @return {@code true} if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped, or {@code null} if this map contains
     * no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key {@code k} to a value {@code v}
     * such that {@code (key==null ? k==null : key.equals(k))}, then this method returns {@code v};
     * otherwise it returns {@code null}. (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i> indicate that the map contains
     * no mapping for the key; it's also possible that the map explicitly maps the key to {@code
     * null}. The {@link #containsKey containsKey} operation may be used to distinguish these two
     * cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K, V> getNode(int hash, Object key) {
        Node<K, V>[] tab;
        Node<K, V> first, e;
        int n;
        K k;
        if ((tab = table) != null
                && (n = tab.length) > 0
                && (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash
                    && // always check first node
                    ((k = first.key) == key || (key != null && keyEquals(key, k)))) {
                return first;
            }
            if ((e = first.next) != null) {
                if (first instanceof TreeNode) {
                    return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                }
                do {
                    if (e.hash == hash
                            && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                        return e;
                    }
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns {@code true} if this map contains a mapping for the specified key.
     *
     * @param key The key whose presence in this map is to be tested
     * @return {@code true} if this map contains a mapping for the specified key.
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map. If the map previously
     * contained a mapping for the key, the old value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with {@code key}, or {@code null} if there was no
     *     mapping for {@code key}. (A {@code null} return can also indicate that the map previously
     *     associated {@code null} with {@code key}.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, i;
        if ((tab = table) == null || (n = tab.length) == 0) {
            n = (tab = resize()).length;
        }
        if ((p = tab[i = (n - 1) & hash]) == null) {
            tab[i] = newNode(hash, key, value, null);
        } else {
            Node<K, V> e;
            K k;
            if (p.hash == hash && ((k = p.key) == key || (key != null && keyEquals(key, k)))) {
                e = p;
            } else if (p instanceof TreeNode) {
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            } else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        {
                            treeifyBin(tab, hash);
                        }
                        break;
                    }
                    if (e.hash == hash
                            && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                        break;
                    }
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null) {
                    e.value = value;
                }
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold) {
            resize();
        }
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size. If null, allocates in accord with initial capacity target
     * held in field threshold. Otherwise, because we are using power-of-two expansion, the elements
     * from each bin must either stay at same index, or move with a power of two offset in the new
     * table.
     *
     * @return the table
     */
    final Node<K, V>[] resize() {
        Node<K, V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY
                    && oldCap >= DEFAULT_INITIAL_CAPACITY) {
                newThr = oldThr << 1; // double threshold
            }
        } else if (oldThr > 0) // initial capacity was placed in threshold
        {
            newCap = oldThr;
        } else { // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float) newCap * loadFactor;
            newThr =
                    (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY
                            ? (int) ft
                            : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"unchecked"})
        Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K, V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null) {
                        newTab[e.hash & (newCap - 1)] = e;
                    } else if (e instanceof TreeNode) {
                        ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
                    } else { // preserve order
                        Node<K, V> loHead = null, loTail = null;
                        Node<K, V> hiHead = null, hiTail = null;
                        Node<K, V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null) {
                                    loHead = e;
                                } else {
                                    loTail.next = e;
                                }
                                loTail = e;
                            } else {
                                if (hiTail == null) {
                                    hiHead = e;
                                } else {
                                    hiTail.next = e;
                                }
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless table is too small, in which
     * case resizes instead.
     */
    final void treeifyBin(Node<K, V>[] tab, int hash) {
        int n, index;
        Node<K, V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) {
            resize();
        } else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K, V> hd = null, tl = null;
            do {
                TreeNode<K, V> p = replacementTreeNode(e, null);
                if (tl == null) {
                    hd = p;
                } else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null) {
                hd.treeify(tab);
            }
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map. These mappings will replace
     * any mappings that this map had for any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param key key whose mapping is to be removed from the map
     * @return the previous value associated with {@code key}, or {@code null} if there was no
     *     mapping for {@code key}. (A {@code null} return can also indicate that the map previously
     *     associated {@code null} with {@code key}.)
     */
    public V remove(Object key) {
        Node<K, V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K, V> removeNode(
            int hash, Object key, Object value, boolean matchValue, boolean movable) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, index;
        if ((tab = table) != null
                && (n = tab.length) > 0
                && (p = tab[index = (n - 1) & hash]) != null) {
            Node<K, V> node = null, e;
            K k;
            V v;
            if (p.hash == hash && ((k = p.key) == key || (key != null && keyEquals(key, k)))) {
                node = p;
            } else if ((e = p.next) != null) {
                if (p instanceof TreeNode) {
                    node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                } else {
                    do {
                        if (e.hash == hash
                                && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null
                    && (!matchValue
                            || (v = node.value) == value
                            || (value != null && valEquals(value, v)))) {
                if (node instanceof TreeNode) {
                    ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                } else if (node == p) {
                    tab[index] = node.next;
                } else {
                    p.next = node.next;
                }
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /** Removes all of the mappings from this map. The map will be empty after this call returns. */
    public void clear() {
        Node<K, V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i) {
                tab[i] = null;
            }
        }
    }

    /**
     * Returns {@code true} if this map maps one or more keys to the specified value.
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the specified value
     */
    public boolean containsValue(Object value) {
        Node<K, V>[] tab;
        V v;
        if ((tab = table) != null && size > 0) {
            for (Node<K, V> e : tab) {
                for (; e != null; e = e.next) {
                    if ((v = e.value) == value || (value != null && valEquals(value, v))) {
                        return true;
                    }
                }
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map,
     * so changes to the map are reflected in the set, and vice-versa. If the map is modified while
     * an iteration over the set is in progress (except through the iterator's own {@code remove}
     * operation), the results of the iteration are undefined. The set supports element removal,
     * which removes the corresponding mapping from the map, via the {@code Iterator.remove}, {@code
     * Set.remove}, {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not
     * support the {@code add} or {@code addAll} operations.
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {

        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<K> iterator() {
            return new KeyIterator();
        }

        public final boolean contains(Object o) {
            return containsKey(o);
        }

        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }

        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super K> action) {
            Node<K, V>[] tab;
            if (action == null) {
                throw new NullPointerException();
            }
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K, V> e : tab) {
                    for (; e != null; e = e.next) {
                        action.accept(e.key);
                    }
                }
                if (modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map. The collection is
     * backed by the map, so changes to the map are reflected in the collection, and vice-versa. If
     * the map is modified while an iteration over the collection is in progress (except through the
     * iterator's own {@code remove} operation), the results of the iteration are undefined. The
     * collection supports element removal, which removes the corresponding mapping from the map,
     * via the {@code Iterator.remove}, {@code Collection.remove}, {@code removeAll}, {@code
     * retainAll} and {@code clear} operations. It does not support the {@code add} or {@code
     * addAll} operations.
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {

        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<V> iterator() {
            return new ValueIterator();
        }

        public final boolean contains(Object o) {
            return containsValue(o);
        }

        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super V> action) {
            Node<K, V>[] tab;
            if (action == null) {
                throw new NullPointerException();
            }
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K, V> e : tab) {
                    for (; e != null; e = e.next) {
                        action.accept(e.value);
                    }
                }
                if (modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the
     * map, so changes to the map are reflected in the set, and vice-versa. If the map is modified
     * while an iteration over the set is in progress (except through the iterator's own {@code
     * remove} operation, or through the {@code setValue} operation on a map entry returned by the
     * iterator) the results of the iteration are undefined. The set supports element removal, which
     * removes the corresponding mapping from the map, via the {@code Iterator.remove}, {@code
     * Set.remove}, {@code removeAll}, {@code retainAll} and {@code clear} operations. It does not
     * support the {@code add} or {@code addAll} operations.
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K, V>> entrySet() {
        Set<Map.Entry<K, V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K, V>> {

        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<Map.Entry<K, V>> iterator() {
            return new EntryIterator();
        }

        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry)) {
                return false;
            }
            Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
            Object key = e.getKey();
            Node<K, V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }

        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }

        public final Spliterator<Map.Entry<K, V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
            Node<K, V>[] tab;
            if (action == null) {
                throw new NullPointerException();
            }
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K, V> e : tab) {
                    for (; e != null; e = e.next) {
                        action.accept(e);
                    }
                }
                if (modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    }

    // Overrides of JDK8 Map extension methods
    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K, V> e;
        V v;
        if ((e = getNode(hash(key), key)) != null
                && ((v = e.value) == oldValue || (v != null && valEquals(oldValue, v)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K, V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a {@link ConcurrentModificationException}
     * if it is detected that the mapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the mapping function modified
     *     this map
     */
    @Override
    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null) {
            throw new NullPointerException();
        }
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null || (n = tab.length) == 0) {
            n = (tab = resize()).length;
        }
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode) {
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            } else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash
                            && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        int mc = modCount;
        V v = mappingFunction.apply(key);
        if (mc != modCount) {
            throw new ConcurrentModificationException();
        }
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        } else if (t != null) {
            t.putTreeVal(this, tab, hash, key, v);
        } else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1) {
                treeifyBin(tab, hash);
            }
        }
        modCount = mc + 1;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a {@link ConcurrentModificationException}
     * if it is detected that the remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the remapping function
     *     modified this map
     */
    @Override
    public V computeIfPresent(
            K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null) {
            throw new NullPointerException();
        }
        Node<K, V> e;
        V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null && (oldValue = e.value) != null) {
            int mc = modCount;
            V v = remappingFunction.apply(key, oldValue);
            if (mc != modCount) {
                throw new ConcurrentModificationException();
            }
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            } else {
                removeNode(hash, key, null, false, true);
            }
        }
        return null;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a {@link ConcurrentModificationException}
     * if it is detected that the remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the remapping function
     *     modified this map
     */
    @Override
    public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null) {
            throw new NullPointerException();
        }
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null || (n = tab.length) == 0) {
            n = (tab = resize()).length;
        }
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode) {
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            } else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash
                            && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        int mc = modCount;
        V v = remappingFunction.apply(key, oldValue);
        if (mc != modCount) {
            throw new ConcurrentModificationException();
        }
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            } else {
                removeNode(hash, key, null, false, true);
            }
        } else if (v != null) {
            if (t != null) {
                t.putTreeVal(this, tab, hash, key, v);
            } else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1) {
                    treeifyBin(tab, hash);
                }
            }
            modCount = mc + 1;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a {@link ConcurrentModificationException}
     * if it is detected that the remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the remapping function
     *     modified this map
     */
    @Override
    public V merge(
            K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null) {
            throw new NullPointerException();
        }
        if (remappingFunction == null) {
            throw new NullPointerException();
        }
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null || (n = tab.length) == 0) {
            n = (tab = resize()).length;
        }
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode) {
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            } else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash
                            && ((k = e.key) == key || (key != null && keyEquals(key, k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null) {
                int mc = modCount;
                v = remappingFunction.apply(old.value, value);
                if (mc != modCount) {
                    throw new ConcurrentModificationException();
                }
            } else {
                v = value;
            }
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            } else {
                removeNode(hash, key, null, false, true);
            }
            return v;
        }
        if (value != null) {
            if (t != null) {
                t.putTreeVal(this, tab, hash, key, value);
            } else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1) {
                    treeifyBin(tab, hash);
                }
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K, V>[] tab;
        if (action == null) {
            throw new NullPointerException();
        }
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K, V> e : tab) {
                for (; e != null; e = e.next) {
                    action.accept(e.key, e.value);
                }
            }
            if (modCount != mc) {
                throw new ConcurrentModificationException();
            }
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K, V>[] tab;
        if (function == null) {
            throw new NullPointerException();
        }
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K, V> e : tab) {
                for (; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization
    /**
     * Returns a shallow copy of this {@code HashMap} instance: the keys and values themselves are
     * not cloned.
     *
     * @return a shallow copy of this map
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K, V> result;
        try {
            result = (HashMap<K, V>) super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    final float loadFactor() {
        return loadFactor;
    }

    final int capacity() {
        return (table != null)
                ? table.length
                : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY;
    }

    /**
     * Save the state of the {@code HashMap} instance to a stream (i.e., serialize it).
     *
     * @serialData The <i>capacity</i> of the HashMap (the length of the bucket array) is emitted
     *     (int), followed by the <i>size</i> (an int, the number of key-value mappings), followed
     *     by the key (Object) and value (Object) for each key-value mapping. The key-value mappings
     *     are emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /** Reconstitute the {@code HashMap} instance from a stream (i.e., deserialize it). */
    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new InvalidObjectException("Illegal load factor: " + loadFactor);
        }
        s.readInt(); // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0) {
            throw new InvalidObjectException("Illegal mappings count: " + mappings);
        } else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float) mappings / lf + 1.0f;
            int cap =
                    ((fc < DEFAULT_INITIAL_CAPACITY)
                            ? DEFAULT_INITIAL_CAPACITY
                            : (fc >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int) fc));
            float ft = (float) cap * lf;
            threshold =
                    ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY)
                            ? (int) ft
                            : Integer.MAX_VALUE);
            @SuppressWarnings({"unchecked"})
            Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators
    abstract class HashIterator {

        Node<K, V> next; // next entry to return
        Node<K, V> current; // current entry
        int expectedModCount; // for fast-fail
        int index; // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K, V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K, V> nextNode() {
            Node<K, V>[] t;
            Node<K, V> e = next;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            if (e == null) {
                throw new NoSuchElementException();
            }
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K, V> p = current;
            if (p == null) {
                throw new IllegalStateException();
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator implements Iterator<K> {

        public final K next() {
            return nextNode().key;
        }
    }

    final class ValueIterator extends HashIterator implements Iterator<V> {

        public final V next() {
            return nextNode().value;
        }
    }

    final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K, V>> {

        public final Map.Entry<K, V> next() {
            return nextNode();
        }
    }

    /* ------------------------------------------------------------ */
    // spliterators
    static class HashMapSpliterator<K, V> {

        final HashMap<K, V> map;
        Node<K, V> current; // current node
        int index; // current index, modified on advance/split
        int fence; // one past last index
        int est; // size estimate
        int expectedModCount; // for comodification checks

        HashMapSpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K, V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K, V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K, V> extends HashMapSpliterator<K, V>
            implements Spliterator<K> {

        KeySpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null)
                    ? null
                    : new KeySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null) {
                throw new NullPointerException();
            }
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else {
                mc = expectedModCount;
            }
            if (tab != null
                    && tab.length >= hi
                    && (i = index) >= 0
                    && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null) {
                        p = tab[i++];
                    } else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null) {
                throw new NullPointerException();
            }
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null) {
                        current = tab[index++];
                    } else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount) {
                            throw new ConcurrentModificationException();
                        }
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K, V> extends HashMapSpliterator<K, V>
            implements Spliterator<V> {

        ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null)
                    ? null
                    : new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null) {
                throw new NullPointerException();
            }
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else {
                mc = expectedModCount;
            }
            if (tab != null
                    && tab.length >= hi
                    && (i = index) >= 0
                    && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null) {
                        p = tab[i++];
                    } else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null) {
                throw new NullPointerException();
            }
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null) {
                        current = tab[index++];
                    } else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount) {
                            throw new ConcurrentModificationException();
                        }
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K, V> extends HashMapSpliterator<K, V>
            implements Spliterator<Map.Entry<K, V>> {

        EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null)
                    ? null
                    : new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
            int i, hi, mc;
            if (action == null) {
                throw new NullPointerException();
            }
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else {
                mc = expectedModCount;
            }
            if (tab != null
                    && tab.length >= hi
                    && (i = index) >= 0
                    && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null) {
                        p = tab[i++];
                    } else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc) {
                    throw new ConcurrentModificationException();
                }
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
            int hi;
            if (action == null) {
                throw new NullPointerException();
            }
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null) {
                        current = tab[index++];
                    } else {
                        Node<K, V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount) {
                            throw new ConcurrentModificationException();
                        }
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support
    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */
    protected abstract Node<K, V> newNode(int hash, K key, V value, Node<K, V> next);

    // For conversion from TreeNodes to plain nodes
    protected abstract Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next);

    // Create a tree bin node
    protected abstract TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next);
    // {
    //        return new TreeNode<>(hash, key, value, next);
    //    }

    // For treeifyBin
    protected abstract TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next);
    // {
    //        return new TreeNode<>(p.hash, p.key, p.value, next);
    //    }

    /** Reset to initial default state. Called by clone and readObject. */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K, V> p) {}

    void afterNodeInsertion(boolean evict) {}

    void afterNodeRemoval(Node<K, V> p) {}

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K, V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (Node<K, V> e : tab) {
                for (; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins
    /**
     * Entry for Tree bins. Extends Entry (which in turn extends Node) so can be used as extension
     * of either regular or linked node.
     */
    abstract static class TreeNode<K, V> extends Entry<K, V> {

        protected abstract boolean keyEquals(Object key, K k);

        protected abstract boolean valEquals(Object value, V v);

        TreeNode<K, V> parent; // red-black tree links
        TreeNode<K, V> left;
        TreeNode<K, V> right;
        TreeNode<K, V> prev; // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K, V> next) {
            super(hash, key, val, next);
        }

        /** Returns root of tree containing this node. */
        final TreeNode<K, V> root() {
            for (TreeNode<K, V> r = this, p; ; ) {
                if ((p = r.parent) == null) {
                    return r;
                }
                r = p;
            }
        }

        /** Ensures that the given root is the first node of its bin. */
        static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
                if (root != first) {
                    Node<K, V> rn;
                    tab[index] = root;
                    TreeNode<K, V> rp = root.prev;
                    if ((rn = root.next) != null) {
                        ((TreeNode<K, V>) rn).prev = rp;
                    }
                    if (rp != null) {
                        rp.next = rn;
                    }
                    if (first != null) {
                        first.prev = root;
                    }
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key. The kc argument caches
         * comparableClassFor(key) upon first use comparing keys.
         */
        final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
            TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                TreeNode<K, V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h) {
                    p = pl;
                } else if (ph < h) {
                    p = pr;
                } else if ((pk = p.key) == k || (k != null && keyEquals(k, pk))) {
                    return p;
                } else if (pl == null) {
                    p = pr;
                } else if (pr == null) {
                    p = pl;
                } else if ((kc != null || (kc = comparableClassFor(k)) != null)
                        && (dir = compareComparables(kc, k, pk)) != 0) {
                    p = (dir < 0) ? pl : pr;
                } else if ((q = pr.find(h, k, kc)) != null) {
                    return q;
                } else {
                    p = pl;
                }
            } while (p != null);
            return null;
        }

        /** Calls find for root node. */
        final TreeNode<K, V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal hashCodes and non-comparable. We
         * don't require a total order, just a consistent insertion rule to maintain equivalence
         * across rebalancings. Tie-breaking further than necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null
                    || b == null
                    || (d = a.getClass().getName().compareTo(b.getClass().getName())) == 0) {
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1);
            }
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         *
         * @return root of tree
         */
        final void treeify(Node<K, V>[] tab) {
            TreeNode<K, V> root = null;
            for (TreeNode<K, V> x = this, next; x != null; x = next) {
                next = (TreeNode<K, V>) x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                } else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K, V> p = root; ; ) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h) {
                            dir = -1;
                        } else if (ph < h) {
                            dir = 1;
                        } else if ((kc == null && (kc = comparableClassFor(k)) == null)
                                || (dir = compareComparables(kc, k, pk)) == 0) {
                            dir = tieBreakOrder(k, pk);
                        }

                        TreeNode<K, V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0) {
                                xp.left = x;
                            } else {
                                xp.right = x;
                            }
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /** Returns a list of non-TreeNodes replacing those linked from this node. */
        final Node<K, V> untreeify(HashMap<K, V> map) {
            Node<K, V> hd = null, tl = null;
            for (Node<K, V> q = this; q != null; q = q.next) {
                Node<K, V> p = map.replacementNode(q, null);
                if (tl == null) {
                    hd = p;
                } else {
                    tl.next = p;
                }
                tl = p;
            }
            return hd;
        }

        /** Tree version of putVal. */
        final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K, V> root = (parent != null) ? root() : this;
            for (TreeNode<K, V> p = root; ; ) {
                int dir, ph;
                K pk;
                if ((ph = p.hash) > h) {
                    dir = -1;
                } else if (ph < h) {
                    dir = 1;
                } else if ((pk = p.key) == k || (k != null && keyEquals(k, pk))) {
                    return p;
                } else if ((kc == null && (kc = comparableClassFor(k)) == null)
                        || (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K, V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null)
                                || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) {
                            return q;
                        }
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K, V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K, V> xpn = xp.next;
                    TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0) {
                        xp.left = x;
                    } else {
                        xp.right = x;
                    }
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null) {
                        ((TreeNode<K, V>) xpn).prev = x;
                    }
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call. This is messier than
         * typical red-black deletion code because we cannot swap the contents of an interior node
         * with a leaf successor that is pinned by "next" pointers that are accessible independently
         * during traversal. So instead we swap the tree linkages. If the current tree appears to
         * have too few nodes, the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0) {
                return;
            }
            int index = (n - 1) & hash;
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
            TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
            if (pred == null) {
                tab[index] = first = succ;
            } else {
                pred.next = succ;
            }
            if (succ != null) {
                succ.prev = pred;
            }
            if (first == null) {
                return;
            }
            if (root.parent != null) {
                root = root.root();
            }
            if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map); // too small
                return;
            }
            TreeNode<K, V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K, V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                {
                    s = sl;
                }
                boolean c = s.red;
                s.red = p.red;
                p.red = c; // swap colors
                TreeNode<K, V> sr = s.right;
                TreeNode<K, V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                } else {
                    TreeNode<K, V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left) {
                            sp.left = p;
                        } else {
                            sp.right = p;
                        }
                    }
                    if ((s.right = pr) != null) {
                        pr.parent = s;
                    }
                }
                p.left = null;
                if ((p.right = sr) != null) {
                    sr.parent = p;
                }
                if ((s.left = pl) != null) {
                    pl.parent = s;
                }
                if ((s.parent = pp) == null) {
                    root = s;
                } else if (p == pp.left) {
                    pp.left = s;
                } else {
                    pp.right = s;
                }
                if (sr != null) {
                    replacement = sr;
                } else {
                    replacement = p;
                }
            } else if (pl != null) {
                replacement = pl;
            } else if (pr != null) {
                replacement = pr;
            } else {
                replacement = p;
            }
            if (replacement != p) {
                TreeNode<K, V> pp = replacement.parent = p.parent;
                if (pp == null) {
                    root = replacement;
                } else if (p == pp.left) {
                    pp.left = replacement;
                } else {
                    pp.right = replacement;
                }
                p.left = p.right = p.parent = null;
            }

            TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) { // detach
                TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left) {
                        pp.left = null;
                    } else if (p == pp.right) {
                        pp.right = null;
                    }
                }
            }
            if (movable) {
                moveRootToFront(tab, r);
            }
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins, or untreeifies if now too
         * small. Called only from resize; see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
            TreeNode<K, V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K, V> loHead = null, loTail = null;
            TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K, V> e = b, next; e != null; e = next) {
                next = (TreeNode<K, V>) e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null) {
                        loHead = e;
                    } else {
                        loTail.next = e;
                    }
                    loTail = e;
                    ++lc;
                } else {
                    if ((e.prev = hiTail) == null) {
                        hiHead = e;
                    } else {
                        hiTail.next = e;
                    }
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD) {
                    tab[index] = loHead.untreeify(map);
                } else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                    {
                        loHead.treeify(tab);
                    }
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD) {
                    tab[index + bit] = hiHead.untreeify(map);
                } else {
                    tab[index + bit] = hiHead;
                    if (loHead != null) {
                        hiHead.treeify(tab);
                    }
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null) {
                    rl.parent = p;
                }
                if ((pp = r.parent = p.parent) == null) {
                    (root = r).red = false;
                } else if (pp.left == p) {
                    pp.left = r;
                } else {
                    pp.right = r;
                }
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null) {
                    lr.parent = p;
                }
                if ((pp = l.parent = p.parent) == null) {
                    (root = l).red = false;
                } else if (pp.right == p) {
                    pp.right = l;
                } else {
                    pp.left = l;
                }
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
            x.red = true;
            for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (!xp.red || (xpp = xp.parent) == null) {
                    return root;
                }
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x) {
            for (TreeNode<K, V> xp, xpl, xpr; ; ) {
                if (x == null || x == root) {
                    return root;
                } else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (x.red) {
                    x.red = false;
                    return root;
                } else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null) {
                        x = xp;
                    } else {
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) && (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        } else {
                            if (sr == null || !sr.red) {
                                if (sl != null) {
                                    sl.red = false;
                                }
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ? null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp != null) && xp.red;
                                if ((sr = xpr.right) != null) {
                                    sr.red = false;
                                }
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null) {
                        x = xp;
                    } else {
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) && (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null || !sl.red) {
                                if (sr != null) {
                                    sr.red = false;
                                }
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ? null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp != null) && xp.red;
                                if ((sl = xpl.left) != null) {
                                    sl.red = false;
                                }
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /** Recursive invariant check */
        static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
            TreeNode<K, V> tp = t.parent,
                    tl = t.left,
                    tr = t.right,
                    tb = t.prev,
                    tn = (TreeNode<K, V>) t.next;
            if (tb != null && tb.next != t) {
                return false;
            }
            if (tn != null && tn.prev != t) {
                return false;
            }
            if (tp != null && t != tp.left && t != tp.right) {
                return false;
            }
            if (tl != null && (tl.parent != t || tl.hash > t.hash)) {
                return false;
            }
            if (tr != null && (tr.parent != t || tr.hash < t.hash)) {
                return false;
            }
            if (t.red && tl != null && tl.red && tr != null && tr.red) {
                return false;
            }
            if (tl != null && !checkInvariants(tl)) {
                return false;
            }
            return tr == null || checkInvariants(tr);
        }
    }

    static class Entry<K, V> extends Node<K, V> {

        Entry<K, V> before, after;

        Entry(int hash, K key, V value, Node<K, V> next) {
            super(hash, key, value, next);
        }
    }
}