/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.fitting;

import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.util.FastMath;

/** This class guesses harmonic coefficients from a sample.

 * <p>The algorithm used to guess the coefficients is as follows:</p>

 * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
 * &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
 * </p>
 *
 * <p>From the analytical expression, we can compute two primitives :
 * <pre>
 *     If2  (t) = &int; f<sup>2</sup>  = a<sup>2</sup> &times; [t + S (t)] / 2
 *     If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
 *     where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
 * </pre>
 * </p>
 *
 * <p>We can remove S between these expressions :
 * <pre>
 *     If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
 * </pre>
 * </p>
 *
 * <p>The preceding expression shows that If'2 (t) is a linear
 * combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
 * </p>
 *
 * <p>From the primitive, we can deduce the same form for definite
 * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
 * <pre>
 *   If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
 * </pre>
 * </p>
 *
 * <p>We can find the coefficients A and B that best fit the sample
 * to this linear expression by computing the definite integrals for
 * each sample points.
 * </p>
 *
 * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
 * coefficients A and B that minimize a least square criterion
 * &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
 * <pre>
 *
 *         &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
 *     A = ------------------------
 *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
 *
 *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
 *     B = ------------------------
 *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
 * </pre>
 * </p>
 *
 *
 * <p>In fact, we can assume both a and &omega; are positive and
 * compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
 * B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
 * <pre>
 *
 * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
 *   f  (t<sub>i</sub>)
 *   f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
 *   x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
 *   y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
 *   z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
 *   update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
 * end for
 *
 *            |--------------------------
 *         \  | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
 * a     =  \ | ------------------------
 *           \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
 *
 *
 *            |--------------------------
 *         \  | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
 * &omega;     =  \ | ------------------------
 *           \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
 *
 * </pre>
 * </p>

 * <p>Once we know &omega;, we can compute:
 * <pre>
 *    fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
 *    fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
 * </pre>
 * </p>

 * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
 * <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
 * expressions to compute &phi;. The best estimate over the sample is
 * given by averaging these expressions.
 * </p>

 * <p>Since integrals and means are involved in the preceding
 * estimations, these operations run in O(n) time, where n is the
 * number of measurements.</p>

 * @version $Revision$ $Date$
 * @since 2.0

 */
public class HarmonicCoefficientsGuesser {

    /** Sampled observations. */
    private final WeightedObservedPoint[] observations;

    /** Guessed amplitude. */
    private double a;

    /** Guessed pulsation &omega;. */
    private double omega;

    /** Guessed phase &phi;. */
    private double phi;

    /** Simple constructor.
     * @param observations sampled observations
     */
    public HarmonicCoefficientsGuesser(WeightedObservedPoint[] observations) {
        this.observations = observations.clone();
        a                 = Double.NaN;
        omega             = Double.NaN;
    }

    /** Estimate a first guess of the coefficients.
     * @exception OptimizationException if the sample is too short or if
     * the first guess cannot be computed (when the elements under the
     * square roots are negative).
     * */
    public void guess() throws OptimizationException {
        sortObservations();
        guessAOmega();
        guessPhi();
    }

    /** Sort the observations with respect to the abscissa.
     */
    private void sortObservations() {

        // Since the samples are almost always already sorted, this
        // method is implemented as an insertion sort that reorders the
        // elements in place. Insertion sort is very efficient in this case.
        WeightedObservedPoint curr = observations[0];
        for (int j = 1; j < observations.length; ++j) {
            WeightedObservedPoint prec = curr;
            curr = observations[j];
            if (curr.getX() < prec.getX()) {
                // the current element should be inserted closer to the beginning
                int i = j - 1;
                WeightedObservedPoint mI = observations[i];
                while ((i >= 0) && (curr.getX() < mI.getX())) {
                    observations[i + 1] = mI;
                    if (i-- != 0) {
                        mI = observations[i];
                    } else {
                        mI = null;
                    }
                }
                observations[i + 1] = curr;
                curr = observations[j];
            }
        }

    }

    /** Estimate a first guess of the a and &omega; coefficients.
     * @exception OptimizationException if the sample is too short or if
     * the first guess cannot be computed (when the elements under the
     * square roots are negative).
     */
    private void guessAOmega() throws OptimizationException {

        // initialize the sums for the linear model between the two integrals
        double sx2 = 0.0;
        double sy2 = 0.0;
        double sxy = 0.0;
        double sxz = 0.0;
        double syz = 0.0;

        double currentX        = observations[0].getX();
        double currentY        = observations[0].getY();
        double f2Integral      = 0;
        double fPrime2Integral = 0;
        final double startX = currentX;
        for (int i = 1; i < observations.length; ++i) {

            // one step forward
            final double previousX = currentX;
            final double previousY = currentY;
            currentX = observations[i].getX();
            currentY = observations[i].getY();

            // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
            // considering a linear model for f (and therefore constant f')
            final double dx = currentX - previousX;
            final double dy = currentY - previousY;
            final double f2StepIntegral =
                dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
            final double fPrime2StepIntegral = dy * dy / dx;

            final double x   = currentX - startX;
            f2Integral      += f2StepIntegral;
            fPrime2Integral += fPrime2StepIntegral;

            sx2 += x * x;
            sy2 += f2Integral * f2Integral;
            sxy += x * f2Integral;
            sxz += x * fPrime2Integral;
            syz += f2Integral * fPrime2Integral;

        }

        // compute the amplitude and pulsation coefficients
        double c1 = sy2 * sxz - sxy * syz;
        double c2 = sxy * sxz - sx2 * syz;
        double c3 = sx2 * sy2 - sxy * sxy;
        if ((c1 / c2 < 0.0) || (c2 / c3 < 0.0)) {
            throw new OptimizationException(LocalizedFormats.UNABLE_TO_FIRST_GUESS_HARMONIC_COEFFICIENTS);
        }
        a     = FastMath.sqrt(c1 / c2);
        omega = FastMath.sqrt(c2 / c3);

    }

    /** Estimate a first guess of the &phi; coefficient.
     */
    private void guessPhi() {

        // initialize the means
        double fcMean = 0.0;
        double fsMean = 0.0;

        double currentX = observations[0].getX();
        double currentY = observations[0].getY();
        for (int i = 1; i < observations.length; ++i) {

            // one step forward
            final double previousX = currentX;
            final double previousY = currentY;
            currentX = observations[i].getX();
            currentY = observations[i].getY();
            final double currentYPrime = (currentY - previousY) / (currentX - previousX);

            double   omegaX = omega * currentX;
            double   cosine = FastMath.cos(omegaX);
            double   sine   = FastMath.sin(omegaX);
            fcMean += omega * currentY * cosine - currentYPrime *   sine;
            fsMean += omega * currentY *   sine + currentYPrime * cosine;

        }

        phi = FastMath.atan2(-fsMean, fcMean);

    }

    /** Get the guessed amplitude a.
     * @return guessed amplitude a;
     */
    public double getGuessedAmplitude() {
        return a;
    }

    /** Get the guessed pulsation &omega;.
     * @return guessed pulsation &omega;
     */
    public double getGuessedPulsation() {
        return omega;
    }

    /** Get the guessed phase &phi;.
     * @return guessed phase &phi;
     */
    public double getGuessedPhase() {
        return phi;
    }

}